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ABSTRACT: A model based on the concept of fractional
calculus is proposed for the description of the relative com-
plex permittivity (�*r � ��r � i��r, where ��r and ��r are the real
and imaginary parts of �*r) in polymeric materials. This
model takes into account three dielectric relaxation phenom-
ena. The differential equations obtained for this model have
derivatives of fractional order between 0 and 1. Applying
the Fourier transform to fractional differential equations and
considering that each relaxation mode is associated with
cooperative or noncooperative movements, we have calcu-
lated �*r(i�,T) (where � is the angular frequency and T is the
temperature). The isothermal and isochronal diagrams ob-
tained from the proposed model of ��r and ��r clearly show

three dielectric relaxation phenomena; in the isochronal
case, each relaxation mode manifests by an increase in ��r
with increasing temperature, and this behavior is associated
with a peak of ��r(T) in each case. The model is matched with
the experimental data on poly(ethylene naphthalene 2,6-
dicarboxylate) (PEN) to justify its validity. Poly(ethylene 2,
6–naphthalene dicarboxylate) (PEN) is a semicrystalline
polymer that displays three dielectric relaxation processes:
�, �*, and �. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98:
923–935, 2005
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INTRODUCTION

Polymeric materials are often used as dielectrics in the
field of electrical engineering. Their applications re-
quire a thorough knowledge of the dielectric relax-
ation phenomena that these materials can undergo.
Dielectric relaxations are associated with molecular
motions leading to a new structural equilibrium with
low energy content. The process by which the poly-
meric macromolecules are rearranged under the ap-
plication of an external electrical field is characteristic
of their structure and morphology; it proceeds at a rate
that increases with temperature. The morphology of
these materials is an intimate mixture of crystal and
amorphous phases, which give rise to a complex semi-
crystalline structure.1–5 This makes an analysis of the
polymer properties very difficult with the traditional
calculus, and in this sense, fractional calculus is an
alternative for describing the dielectric relaxations.

Fractional calculus is the branch of mathematics that
deals with the generalization of integrals and deriva-
tives of all real orders.6–10 In the case of relaxation
phenomena, the fractional order of a fractional inte-
gral is an indication of the remaining or preserved
energy of a signal passing through a viscoelastic sys-
tem (partial energy dissipation).11 Similarly, the frac-
tional order of a differential operator reflects the rate
at which a portion of energy has been lost. In previous
works, we have used fractional calculus for modeling
the complex modulus in the mathematical description
of three mechanical relaxations under isothermal12,13

and isochronal conditions.14,15 This mechanical frac-
tional model provides a better description than the
classical models formulated with integer-order deriv-
atives.

The aim of this work is to propose a dielectric frac-
tional model (DFM) for the description of the relative
complex permittivity (�*r) under isothermal and isoch-
ronal conditions, with consideration given to three
relaxation phenomena. To test the validity of DFM, we
have compared the model predictions and the exper-
imental measurement data of the real (��r) and imagi-
nary (��r) parts of �*r for a semicrystalline polymer,
poly(ethylene 2,6-naphthalene dicarboxylate) (PEN).
From the experimental measurements of �*r for
PEN,16–19 the following relaxation modes can be ob-
served in order of decreasing temperature: the � re-
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laxation, due to the cooperative motions of chain seg-
ments by a configuration rearrangement of the entire
chain, reflecting the dielectric manifestation of the
glass transition; the �* relaxation, assigned to partially
cooperative molecular motions of the naphthalene
groups; and the � relaxation, due to local fluctuations
(noncooperative movements) of the carbonyl groups.

DIELECTRIC BEHAVIOR AND FRACTIONAL
CALCULUS

Polymers are known to be electrical-insulating mate-
rials because the electrons of their atoms have very
little freedom of movement. A typical model of an
insulating material can be considered to be composed
of small electrical dipoles. In dielectric materials, all
the dipoles align (polarized) in the direction of an
applied electrical field.

It must be understood that polymers are not ideal
insulators. In the solid state, a semicrystalline polymer
is a very good insulator, but it can become a conductor
when its temperature is raised. In this case, the elec-
trical field will give rise to charge transport.

In the domain of linearity, the electric current (I)
through a material is directly proportional to the volt-
age (V) applied across it:

V � RI � RDt
1Q (1)

where R is the electrical resistance and Dt
1Q is the

first-order derivative of the electrical charge (Q) with
respect to time.

On the other hand, an ideal insulating material can
be represented by a capacitor because it does not
display electrical conduction under an applied volt-
age. In such a case, the algebraic expression will be

V �
Q
C �

1
C Dt

0Q (2)

where C is the capacitance and the electrical charge
can be defined as the zero-order derivative of Q with
respect to time (Dt

0Q).
In this way, an intermediate electrical behavior be-

tween eqs. (1) and (2) can be obtained with the frac-
tional calculus:

V � �1
C�

1�a

RaDt
a Q �

�RC�a

C Dt
a Q �

�a

C Dt
aQ (3)

where Dt
aQ is the fractional derivative of Q with re-

spect to time, evidently with a � (0,1), and RC � � is
a characteristic time, called the relaxation time, that
can be associated with the time required by chain
segments (electrical dipoles) in movement for a com-
plete reorganization and a full reorientation to a new

state of structural equilibrium. Equation (3) represents
a new electrical-fractional element named a cap resis-
tor. From eq. (3), a resistor behavior is obtained when
a is 1, and when a is 0, the electric behavior is that of
a capacitor [eq. (2); see Fig. 1].

The fractional-order derivative of Q in eq. (3) is
defined as6,11

Dt
a Q�t� � D�

0

t

�t � y��a

��1 � a�
Q�y� dy a � �0,1� (4)

where � is the gamma function:

��m� � �
0

�

e�u um�1 du, with m � 0 (5)

Equation (4) is obtained from the Riemann–Liouville
definition of a fractional-order integral. This fraction-
al-integral operator is a generalization of noninteger
values of Cauchy’s formula for repeated integrations.
Equation (6) is the fractional-order integral of Q(t)
defined between 0 and t:6,11

Dt
�a Q�t� � �

0

t

�t � y�a�1

��a�
Q�y� dy a � �0,�� (6)

In the following, we are going to use the Fourier
transform of a fractional differential operator, Dt

aQ(t),
which can be written as a product of (i�)a (where � is

Figure 1 New electric-fractional element cap resistor.
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the angular frequency) and the Fourier transform of
the function Q(t).6–10

Using the electrical elements of Figure 1, we can
build electrical circuits for modeling �*r of polymeric
materials. In dynamic dielectric spectrometry, a sinu-
soidal alternating voltage (V) of very low amplitude
having an angular frequency (�) is applied to a poly-
mer specimen inducing an electric current (I). V and I
are out of phase at an angle 0 	 	 	 
/2; conse-
quently, V, I, and the admittance (Y; the inverse of
impedance) can be written as complex numbers in the
following way:

V* � V0 exp�i�t� I* � I0 exp�i�t � 	� Y* �
I*
V* (7)

From admittance Y*, using eq. (8), we can estimate to
a first approximation the complex capacity (C*) or �*r:

�*r �
�*
�0

�
C*
C0

�
Y*

i�C0
(8)

where �* is the absolute complex permittivity of the
polymer and �0 and C0 are the permittivity and the
capacitance of free space, respectively.

Figure 2 is an electrical circuit obtained by the sub-
stitution of R by a cap resistor in the classical Debye
model. This new fractional model is analogous to the
fractional Zener model9,12–15 used for the mathemati-
cal description of the complex elastic modulus char-
acterized by only one relaxation phenomenon.

The fractional differential equation obtained for this
electrical circuit is

V �
Q � C�V
CS � C�

�
�a

CS � C�
Dt

a�Q � C�V� (9)

where V is the applied voltage, CS is the capacitance at
a low frequency (or high temperature), C� is the ca-
pacitance at a high frequency (or low temperature),
and � is the characteristic time of the electric circuit in
Figure 2. Equation (9) provides us, after Fourier trans-
formation, ��r and ��r:

��r � �r� �

��rs � �r���1 � 
���a cos�a



2��
�1 � 
���a cos�a




2��
2

� �
���a sin�a



2��

� �r �

��rs � �r��� 
���a sin�a



2��
�1�[��]a cos�a




2��
2

�� [��]a sin�a



2��
(10)

where �rs is the relative permittivity at a low fre-
quency (or high temperature) and �r� is the relative
permittivity at a high frequency (or low temperature).
The � parameter is associated with the relaxation time
of molecular motions of the dielectric relaxation phe-
nomenon. In polymers, the relaxation time is temper-
ature-dependent and under isothermal conditions can
be assumed to be constant; consequently, eq. (10) de-
pends on the frequency and parameter a. The values of
��r(�) and ��r(�) can be combined in a single curve
called a Cole–Cole diagram. Figure 3 shows Cole–Cole
diagrams obtained from eq. (10) at different values of
parameter a. A qualitative classical dielectric response
for polymers can be obtained with values of a between
0 and 1. These diagrams are symmetrical at all values
of parameter a; however, it is well known that for
polymers in a glassy state, the Cole–Cole diagrams are
asymmetrical curves.20–22

To obtain the asymmetrical behavior in the Cole–
Cole diagrams, it is necessary to add a second cap
resistor, b, to the model of Figure 2 (see Fig. 4). This
model is characterized by two mechanisms. The first
cap-resistor element, a, characterizes short times, �a,
associated with the electrical behavior in the high-
frequency or low-temperature region. The second cap
resistor, b, characterizes long times, �b, associated with
the electrical behavior in the low-frequency or high-
temperature region.

The fractional differential equation obtained for this
model is

Q � C�V � �CS � C����a
�a Dt

�a�V �
Q � C�V
CS � C�

�
� �b

�b Dt
�b�V �

Q � C�V
CS � C�

�� (11)

Applying the Fourier transformation to eq. (11) and
using eq. (8), we obtain ��r and ��r:

Figure 2 Electric circuit with a cap-resistor element for
modeling only one dielectric relaxation phenomenon.
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��r � �rs

�

��rs � �r�1��1 � 
��b�
�b cos�b




2� � 
��a�
�a cos�a




2��
�1 � 
��b�

�b cos�b



2� � 
��a�
�a cos�a




2��
2

� �
��b�
�b sin�b




2� � 
��a�
�a sin�a




2��
2

� �r �

��rs � �r�1�� 
��b�
�b sin�b




2� � 
��a�
�a sin�a




2��
�1 � 
��b�

�b cos�b



2� � 
��a�
�a cos�a




2��
2

� �
��b�
�b sin�b




2� � 
��a�
�a sin�a




2��
2

(12)

Figure 5 shows the classical asymmetrical response
(Cole–Cole diagrams) of the system [eq. (12)] under
isothermal conditions. The maximum of ��r obtained is
associated with one relaxation phenomenon. In Figure
5, we confirm the fact that two cap resistors can re-
produce the different dielectric behaviors of the sys-
tem at low and high frequencies. The slope at low
values of ��r (low temperature or high frequency) will
be a
/2, and in the region of high values of ��r (high
temperature or low frequency), this angle will be
b
/2.

The model of Figure 4, even with two cap resistors,
can represent only the dielectric behavior of polymers
in the neighborhood of one relaxation phenomenon.
This model cannot be used for polymers with three
distinct dielectric relaxations. In such a case, the Cole–
Cole diagrams must show three distinct peaks.

We present, therefore, another fractional model
with the aim of predicting the dielectric behavior of
polymers with three relaxation phenomena (�, �*, and
� for PEN). We have developed a DFM based on three
electrical circuits arranged in parallel (see Fig. 6). The
first one possesses two cap resistors, a and b, and is

Figure 3 Cole–Cole diagrams under isothermal conditions obtained from eq. (10), with � � 100 s, �rs � 5, and �r� � 1.5.

Figure 4 Electric circuit with two cap resistors for model-
ing only one dielectric relaxation phenomenon in polymeric
materials.
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mainly associated with the � relaxation. The second
one has only one cap resistor, c, and is associated with
the �* relaxation. The last one also has only one cap
resistor, d, and is associated with the � relaxation.

In the DFM, the electric charge is the result of the
contributions of elements 1, 2, and 3:

Q � Q1 � Q2 � Q3 (13)

V is equal to the individual voltage of each element:

V � V1 � V2 � V3 (14)

Applying the Fourier transformation to eq. (13) and
using eqs. (14) and (8), we find that �*r can be expressed
as a function of the relative complex permittivities of
each element of our DFM:

�*r � �1*r � �2*r � �3*r � ��r � i� �r (15)

��r � �1�r � �2�r � �3�r (16)

� �r � �1 �r � �2 �r � �3 �r� (17)

In eqs. (16) and (17), �1�r and �1�r are the same, already
defined by eq. (12). For element 2 of Figure 6, related
to �* relaxation, �2�r and �2�r are the same as those in
eq. (10), and third element is equivalent to the second
one, with �3�r and �3�r also defined by eq. (10).

Figure 7 presents Cole–Cole diagrams obtained un-
der isothermal conditions from eqs. (16) and (17). In
this case, we have verified the behavior of DFM at
different values of b; the remaining parameters, a, c,
and d, are constants.

Figure 7 shows how our model predicts the exis-
tence of three maxima corresponding to dielectric re-
laxations: �; �*; and �. The maximum at lower values
of ��r represents the � relaxation, the second maximum
is associated with the �* relaxation, and the last one at
higher values of ��r is associated with the � relaxation.
However, parameters a and b are associated mainly
with the � relaxation, c is associated with �*, and d is
associated with �.

The Cole–Cole diagrams of Figure 7 were obtained
from the frequency dependence of the real and imag-
inary parts of �*. However, in practice, it is very useful
to study and analyze the temperature dependence of
�* (isochronal conditions). The isochronal spectra of ��r
and ��r can be obtained from eqs. (16) and (17) because
of the temperature dependence of the parameters: �a,
�b, �c, and �d.

ISOCHRONAL BEHAVIOR OF �*r

To obtain the temperature dependence of �*r, we need
to define the relationship between the relaxation time,
�, and the temperature, T, which in turn depends on
the cooperative and noncooperative nature of the mo-
lecular motions23,24 associated with each dielectric re-

Figure 5 Cole–Cole diagram obtained under isothermal conditions from eq. (12), with �a � 100 s, �b � 110 s, �rs � 5, and
�r� � 1.5.

MODELING OF DIELECTRIC RELAXATION PHENOMENA 927



laxation phenomenon. The cooperative movements
are simultaneous motions of macromolecular chain
segments due to the interference with the neighboring
chain segments. In a noncooperative process, the chain
segments are able to move without any interference
with their neighbors, being much localized move-
ments.

�(T), for noncooperative motions follows an Arrhe-
nius law behavior:

��T� � �0 exp� Ea

kBT� (18)

where the activation energy (Ea) could have magni-
tudes identifiable with real energy barriers;25 kB is the
Boltzmann constant; T is the absolute temperature;
and �0 is the pre-exponential factor, falling typically
within the range of 10�16 s � �0 � 10�13 s. The values
of �0 in the vicinity of the upper limit correspond to
molecular vibrational times, and the lower limit may
be rationalized by an additional entropy contribu-
tion.25 In the case of PEN, several works have shown
that the relaxation times of the � relaxation obey the
Arrhenius law.16–19

Figure 6 DFM for �, �*, and � dielectric relaxations of PEN.
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On the other hand, for a cooperative process, the
probability of success of cooperative motions is PZ,
with P  1/� representing the probability of a single
elementary movement, and exponent Z can be consid-
ered the number of elementary movements. Conse-
quently, �cooperative represents a power law in a tem-
perature range from T0 to the crossover temperature
(T*):24

�cooperative�T� � �0� �

�0
�Z

� �0�exp�Ea elementary movements

kBT ��Z

T0

� T � T* (19)

In eq. (19), � is the relaxation time of the elementary
movement defined by an Arrhenius behavior, and Z is
dependent on the polymer structure and is deter-
mined from the next equation:23,24

Z�T� �
T
T*

T* � T0

T � T0
T0 � T � T* (20)

At temperatures above T*, cooperative and noncoop-
erative movements merge together24 and Z is 1; below
T*, the relaxation times of cooperative movements can
be obtained from the empirical Vogel–Fulcher–Tam-
mann equation. This temperature T* is of the order of
1.3Tg in polymers that are completely amorphous, and
in semicrystalline polymers, T* is equal to the melting
temperature.24 T0 is a temperature below the glass-
transition temperature (Tg) at which Z approaches
infinity and �cooperative extrapolates to infinity. In the

case of PEN, the � relaxation is associated with the
cooperative motions, which reflect the dielectric man-
ifestation of the glass transition, and the �* relaxation
has been associated with partially cooperative move-
ments.

Figure 8 is a representation of the temperature de-
pendence of the relaxation times of a polymeric sys-
tem with three kinds of molecular motions: coopera-
tive motions (�), partially cooperative motions (�*),
and noncooperative motions (�).

To obtain the isochronal diagrams of �r� and �r�
from eqs. (16) and (17), the cooperative (�) and par-
tially cooperative (�*) motions have been defined by
eq. (19); eq. (18) has been used for noncooperative (�)
movements.

Testing the response of the fractional model under
isochronal conditions

To verify the dielectric behavior of the model defined
by eqs. (15)–(17), we proceeded to vary systematically
the fractional order of the cap resistors that constitute
the DFM. These parameters can take values only be-
tween 0 and 1.

Figure 9 shows the isochronal predictions of ��r and
��r at different values of b, with a, c, and d remaining
constant.

In Figure 9, the ��r(T) plot shows, per our fractional
model prediction, the existence of three peaks corre-
sponding to �, �*, and � dielectric relaxations. The
peak at lower temperatures corresponds to the � re-

Figure 7 Cole–Cole diagram obtained from the model of Figure 4 under isothermal conditions, with �a � 100 s, �b � 200 s,
�c � 1 � 10�4 s, �d � 1 � 10�9 s, �1rs � 2.5, �1r� � 1.1, �2rs � 2, �2r� � 1.15, �3rs � 1.8, and �3r� � 1.2.
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Figure 8 � values of the different molecular motions of semicrystalline polymers.

Figure 9 ��r and ��r under isochronal conditions at a frequency of 10 Hz. The parameters for � relaxation are �1rs � 2.5, �1r�
� 1.1, Ea elementary movement � 0.7 eV, �b(T) � �a(T), �0 � 1 � 10�14 s, T* � 540 K, and T0 � 350 K. The parameters for �*
relaxation are �2rs � 2, �2r� � 1.15, Ea elementary movement � 0.55 eV, �0 � 1 � 10�14 s, T* � 540 K, and T0 � 150 K. The
parameters for � relaxation are �3rs � 1.8, �3r� � 1.2, Ea � 0.5 eV, and �0 � 1 � 10�14 s.
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laxation, the second peak is associated with the �*
relaxation, and the last one at higher temperatures is
related to the � relaxation. The maximum at the �
relaxation increases as b increases. The shape of the
curves of ��r and ��r at the start of the � relaxation when
the temperature decreases is strongly dependent on
parameter b, whereas at the end of the curves param-
eter a determines the changes in ��r and ��r. Parameter
a could also be associated with the zone placed be-
tween the � and �* relaxations; this zone includes the
minimum.

The effect of parameter c on ��r and ��r is shown in
Figure 10, the rest of the parameters remaining con-
stant.

At higher values of c, the slope of the ��r curve is
more pronounced, being practically vertical at values
of c close to 1. On the other hand, the maximum of ��r
corresponding to the �* relaxation increases when c
increases. This parameter thus affects, on the one
hand, the maximum of the �* relaxation and, on the
other hand, both the minima, one located between the
� and �* relaxations and other between �* and �. Both
these minima increase when c decreases.

Finally, Figure 11 shows the effect of parameter d on
��r and ��r, with a, b, and c remaining constant. The
shape of ��r and ��r in the region corresponding to the �
relaxation is dependent on d. When parameter d in-
creases, the maximum associated with the � relaxation

also increases. On the other hand, d also affects the
minimum located between the �* and � relaxations;
this minimum increases when d decreases.

We can deduce from Figures 9–11 the combined
effect of parameters a and c in the region between the
� and �* relaxations and the combined effect of pa-
rameters c and d in the region between the �* and �
relaxations.

From the individual contributions of our DFM ele-
ments, we can make an approximation of the decon-
volution of molecular movements and carry out a
distinct analysis of each dielectric relaxation contribu-
tion on the global spectrum of the system. Figure 12
shows the global response of ��r and ��r and the indi-
vidual contributions of the model elements. The tem-
perature dependence of �r� shows that at very low
temperatures, ��r is equal to the global nonrelaxed
permittivity (�r�):

�r� � �1r� � �2r� � �3r� (21)

On the other hand, at higher temperatures, ��r is equal
to the global relaxed permittivity (�rs):

�rs � �1rs � �2rs � �3rs (22)

Figure 13 shows the Cole–Cole diagram for each
element in our model; the figure also shows how to

Figure 10 Isochronal predictions of ��r and ��r with different values of c at a frequency of 10 Hz. The other DFM parameters
correspond to Figure 9.

MODELING OF DIELECTRIC RELAXATION PHENOMENA 931



calculate the parameters a, b, c, d, �1rs, �1r�, �2rs,
�2r�, �3rs, and �3r� from individual Cole–Cole dia-
grams.

In the next section, we compare the theoretical predic-
tions of our DFM with experimental results of �*r for a

45-m-thick semicrystalline specimen of PEN with a
crystallinity rate of 43%. Gold metallization was carried
out on both sides of the sample to guarantee better
contact with the electrodes of the dielectric analyzer used
(DEA2979, TA Instruments, New Castle, DE).

Figure 11 ��r and ��r under isochronal conditions for different values of parameter d at a frequency of 10 Hz. The values of
the remaining parameters correspond to Figure 9

Figure 12 Individual contributions of each DFM element at f � 10 Hz, with a � 0.8, b � 0.4, c � 0.35, and d � 0.2. The
activation parameters are those of Figure 9.
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COMPARISON OF THE EXPERIMENTAL
RESULTS AND DFM PREDICTIONS

Figures 14–16 show a good agreement between the
model predictions and experimental results obtained
for ��r and ��r at a frequency of 10 Hz from 100 to 160°C.

In Figure 14, each relaxation mode is manifested by
an increase in ��r with increasing temperature. They are
also associated with three ��r peaks (Fig. 15).

At T � 160°C, the imaginary part of the complex
permittivity increases with an increase in temperature,
and this behavior is associated with the phenomenon
of conductivity and is not predicted by our DFM. With
a frequency set at 10 Hz, the � relaxation is found at T
� 140°C, �* is found at T � 70°C, and � is found at T
� �66°C.

Table I shows the values of the DFM parameters
used to obtain the predictions of ��r and ��r in Figures
14–16. The fractional orders of the cap resistors show
the next behavior: b � a � c � d. As a first approxi-

mation, molecular motions related to the � relaxation
can be represented by parameter d, the partially coop-
erative motions related to the �* relaxation can be
represented by parameter c, and parameters a and b
could be used to represent cooperative motions re-
lated to the � relaxation.

The molecular motions associated with the dielec-
tric manifestation of � are cooperative movements
within the temperature range of T0 � Tg � 50°C to T*
� 267°C. In this case, T* is equal to the melting point
of PEN. From eqs. (19) and (20), we can estimate the
apparent activation energy (Eapparent) of the �-cooper-
ative motions from the next equation:

Eapparent � �Ea elementary movements��Z� � �Ea elementary movements�

� � T
T*

T* � T0

T � T0
� (23)

Figure 13 Cole–Cole diagrams for each element of the
model based on individual contributions, corresponding to
Figure 12.

Figure 14 Comparison of the model predictions and exper-
imental data for ��r(T) at 10 Hz.

Figure 15 Comparison of the model predictions and exper-
imental data for ��r(T) at 10 Hz.

Figure 16 Comparison of the model predictions and exper-
imental data for Cole–Cole diagrams at 10 Hz.
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For �*, the molecular motions are less cooperative
than � movements; T* in this case is also equal to the
melting point of PEN, and T0 is less than Tg � 50°C.
Eapparent of the �* partially cooperative movements is
also defined by eq. (23) with the corresponding acti-
vation parameters shown in Table I.

For the � relaxation, Eapparent has a low value cor-
responding to noncooperative processes. Figure 17
shows Eapparent for �, �*, and � processes obtained
from activation parameters shown in Table I.

CONCLUSIONS

The method of derivation and fractional integration
has enabled us to develop a model that accounts for

the dielectric behavior of polymers with three distinct
relaxation phenomena.

Choosing arbitrarily the values of the fractional or-
ders of cap resistors in our fractional model, we have
calculated for an applied sinusoidal form ��r and ��r.
These diagrams have enabled us to analyze the effects
of the model parameters on the �, �*, and � dielectric
relaxations. The parameters a and b are mainly asso-
ciated with the � relaxation, parameter c is associated
with �*, and parameter d is associated with �.

The transition zones between the � and �* relaxations
and the �* and � relaxations are associated with param-
eters a and c and parameters c and d respectively. These
transition zones are very important because they are
very sensitive to the phenomena of physical aging.9

TABLE I
Parameters of the DFM

� relaxation: Cooperative motions
�* relaxation: Partially cooperative

motions
�-relaxation: Noncooperative

motions

b� 0.41 c 0.19 d 0.17
a 0.24
(�1rs � �1r�) 0.58 (�2rs ��2r�) 0.25 (�3rs��3r�) 0.24
Eaelementary

movements 0.47eV
Eaelementary

movements 0.56 Eapparent 0.5
�0 1 � 10�14 s �0 1 �10�14s

T*
540 K

(267°C) T* 540K (267°C) �0 1 �10�14s

T0 349 K (76°C) T0

190K
(�83°C)

Figure 17 Eapparent for the �, �*, and � processes.
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The comparison between the experimental results
and DFM predictions has enabled a molecular inter-
pretation of our DFM parameters. In the continuation
of our work, we will analyze the experimental mea-
surements of �*r for PEN specimens at different crys-
tallinity rates. This will enable us to improve the mo-
lecular interpretation of our DFM parameters.
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